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EXTENDED DISPLACEMENT BOUND THEOREMS FOR
WORK HARDENING CONTINUA SUBJECTED TO
IMPULSIVE LOADING*

J. B. MARTINT

Brown University, Rhode Island, U.S.A.

Abstract—Earlier work presenting a technique for bounding displacements following impuisive loading in
inelastic continua is extended to give more powerful results for stable work hardening materials. The extension
is achieved by adding a self-evident statement regarding the material behavior to Drucker’s postulate of stability
for time independent, path dependent solids.

1. INTRODUCTION

IN A PREVIOUS PAPER [1] a general principle relating independent equilibrium stress
fields and compatible strain fields was developed for a path-dependent work hardening
solid. In conformity with many principles of this type, the strains considered are not
necessarily infinitesimally small (small-small), but nevertheless sufficiently small that the
effect of the strain on the undeformed geometry of the solid may be ignored (large—small).

The principle was developed for a class of work hardening materials which satisfies
Drucker’s postulated criterion of stability [2] for large—small deformations. It was found,
however, that the applications of the principle were limited by a necessary requirement
that there should exist a substantial range of path independent or elastic behavior. This
paper is motivated by a desire to remove this limitation and to develop a more powerful
principle for large-small deformations.

In order to achieve this extension we shall make use of an additional statement about
the material which introduces no further postulates. It will then be shown that a more
general principle may be developed which in certain cases can be usefully applied to the
computation of displacement bounds for impulsively loaded structures and continua.

We shall consider initially a small homogeneously stressed element of the material,
and assume that changes in stress are imposed on the material. The state of stress may
be represented by a stress point in a nine-dimensional orthogonal stress space: The nine
coordinates of the stress point are then the nine components of the stress tensor o
A stress path between two states of; and o}; is the locus of the stress point between the
initial and final points. The stress—strain relation will map a strain path corresponding
to the change in stress. The material may be path dependent: thus changes in strain
which occur in changing the stress state may depend on the stress path.

* The results presented in this paper were obtained in the course of research sponsored by the David Taylor
Model Basin, Underwater Explosions Research Division, under Contract N189(181)-57827A(X).
t Assistant Professor of Engineering, Brown University.
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10 J. B, MARTIN

All materials considered in his paper will be assumed time independent. This means
that, in following a given stress path between two states, the stress rate 4;; is of no con-
sequence in determining the strain response.

2. STABILITY POSTULATES

We shall consider only materials which satisfy the following postulated properties
for large-small deformations:

(i) If the stress path between two stress states a¥;, of; is a straight line in stress space,

db
J y (e} — &) daty = 0. (1)
The asterisk will be used to denote a straight line path. It must be emphasized
that a straight line path is taken to indicate a monotonic change in |o;; — o¥
(Fig. 1). The strain ¢f; is associated with o7}, and is dependent on the entire previous
stress history. &, remains constant in the integrand of (1), and thus (el — &)
indicates changes in strain measured from &f;.

» Jjj —» 0j;

Fis. 1. Fig. 2.

(ii) The net complementary work integral around any cycle in stress space (Fig. 2)
is negative or zero,

$ (e — ) doy, < 2)

These postulates are identical to those given by Drucker [2]. Inequality (1) follows
directly from the postulate for small-small changes, usually written in the form

Ao Ag; > 0 3)

where Ag;; is the change in strain produced by an infinitesimally small change in stress
Ag;; (cf. Drucker [3]). Inequality (2) is equivalent to the postulate that the net work
integral around any cycle is non-negative.

It may be noted that by considering any path from ¢¥; to o¥; (Fig. 3) and then assuming
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that the cycle is completed by a straight line path from ¢}; to of; we may derive an in-
quality for net work along any path. For the path given in F1g 3, from (2),

0’5’1 %
| ey — sty doy + | e — ef) do

o a?;
aob, ag. (4)
= j (6 — &) doy; + j - ep)dof + (& — &) (0%, — o%) < 0
ofy o
where, as before, the asterisk indicates a straight line path. Using the fact that
a?j
| (o = o) oy + j (o = of) deyy = (@ ~ t)(ely — o %)
i
and inequality (1), (4) becomes
e?j
L (0y; — 0%) dey; > j @y - ey dot 2 0. (6)
A \
b
i
o
—» 0 »>
FIG. 3. FiG. 4.

This form of Drucker’s postulates was used in deve]opmg the earlier principle [1]
We shall use the following self-evident statement in addition to the postulates (1)
and (2): of all physically possible paths from ¢f; to of; there exists a path p such that

al!)j lj
| e~ efydot > [ (e — e doy, (7
L41 47}

Thus p is a path (or a member of a family of paths) for which the net complementary
work done in changing the state of stress from o7; to ¢}; is a maximum. It is obvious from
(1) that this maximum complementary work is non-negative. We may expect, for reason-
able materials, that the maximum complementary work for a given stress change is
finite, but this is not a necessary restriction from a purely mathematical point of view.

In the following section we shall use this maximum complementary work path to
establish a general principle for arbitrary equilibrium stress fields and compatible strain
fields in a continuum. It will become evident that this principle cannot be used in practice
unless the p path is known. In consequence, we shall discuss some simple cases where
the maximum work path can be found.
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3. THE GENERAL PRINCIPLE

Consider an element of material with stress of; and strain &j;. We suppose that there
may occur two independent stress changes (Fig. 5). First, let the stress be changed from
of; to oj; by a p path, ie. a path for which the net complementary work is a maximum.
Second let the stress be changed from of; to ¢f; by some unspecified path, and consider
a further change in stress from gf; to gi; by a straight line path. Then

af of afj a
| et—etydoti= | (ey—ef)doy+ [ (eh—ef) dat. ()
Now
el *__ o0 * ol * _ o€ * c YR c
f (ek—ef;) dot; =j (ef—&fp) Aot +(ef;— &) (0, — %)) 9)
ofj o’fj
and
afj a c a < a Efj a
L«: (&;—&ip) doy; = (aij_aij)(sij—sij)— j . (0:;—07)) de;;. (10)
7] o1y

From (8), (9), (10) and (1),
L4 1] a & af;
| =ty dop+ [ (0~ at) dey—(of~af)(e—e) = [ (eh~ei) dof = 0. (11)
7% &fy 47

We now consider the entire continuum. Let surface tractions 7%, displacements uf,
stresses a7}, strains &f; represent the initial state of the body. Assume body forces are zero:
body forces may be included (cf [1]) but are omitted for clarity.

Let of; be a stress field which is in internal equilibrium, so that

8,05,=0 (12)

FiG. 5.
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where 0; represents spatial differentiation, and in external equilibrium with body forces
T3,
! T; = vo3;, (13)
v; is the unit outward normal at the point under consideration.
Let &; be a strain field for the continuum which is compatible with displacement u¢.
Thus if 4 is continuous and continuously differentiable

= Ho,uf + 01s5). (14)

We may now write, by the principle of virtual work,
[, (Ti-Towi—wpda = | @h-ot)ie—etyav (1)

where 4 and V are respectively the surface area and volume of the continuum. Notice
that it is not necessary that the assumed stress and strain fields should satisfy any par-
ticular boundary conditions.

We may now consider independent changes from the initial state: ¢f; changing to
&;; along any unspecified path, ¢f; changing to ¢7; along a maximum complementary work
path. Thus, integrating (11) over the volume, and substituting from (15),

j de —¢f) dof, +j def’(a..—ae.)da,.,.z L(T?—T‘,-’)(uf—u;‘)dA. (16)

This expression is similar to that found in [1], except that the complementary work
term on the left hand side was previously required to be taken over an elastic (i.e. revers-
ible) path.

It will be usually extremely difficult to apply this new principle in practice since the p
path will not be known and will probably depend on the state of;. These are some simple
cases where the p path can be found, and these will be dxscussed in the following section.

4. MAXIMUM COMPLEMENTARY WORK PATHS FOR SIMPLE CASES

In order to establish continuity with previous work [1], we shall consider first a
material with a substantial range of elastic behavior. Figure 6 shows two independent
paths from of; to o};, one of which lies entirely within the yield surface. The yield surface
is that correspondmg to of;: all stress paths lying within the yield surface are reversible.
Due to this reversibility, a path from ¢?; i to ¢ along the reversible path (to be denoted
by the superscript r) and then back to ¢/ along the irreversible path is admissible. Hence
from (2)

of o},
[, et doi+ [ Gey=eh) day <. (17)
k1]
Now
aﬁ r b r ¢?j r a b a.b 18
j? (efj—&) doy; = "J " (ef;—&f;) doj; + (ef; — &) (01— 7)) (18)
d’j [ 4
and
a} af
J., o=ty doy = [ @y—ai) doy+ (e~ ed)ich—ot). (19)
iy o1
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YIELD SURFACE

FiG. 6.
Hence from (17), (18) and (19)
{7 ey—epdoy <[ (eh—et)daij. (20)

Thus, if an elastic, reversible path exists between of; and 7, this path gives the maximum
net complementary work. The earlier principle for work hardening solids [1] was
restricted to this case; the work given in this paper is thus a consistent extension.
Secondly, consider a state of stress in which only one stress component and its
associated strain component is non-zero. Uniaxial tension is an example. It is convenient
in this case to plot the stress—strain relation (Fig. 7). We assume a conventional work
hardening material: initially the behavior is elastic, followed by an inelastic range where

STRESS O

LOADING
UNLOADING

STRAIN €

FiG. 7.
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unloading occurs with the elastic slope. In this context a straight line stress path is a
monotonic change from one stress state to another.

Provided that the material satisfies (1) and (2), it may be seen by inspection that the
maximum complementary work occurs for a straight line path (as opposed to a path
involving a change in sign of the stress rate) for a change in stress from o° to ¢’, no matter
what the previous history. This alone is an important case, for many structures are
analyzed on the assumption that only one generalized strain component is non-zero.

For more general states of stress it appears difficult to establish maximum comple-
mentary work paths for changes from any ¢f; to any o}; because of the effect of previous
stress history. However, if we limit of; to be identically zero and suppose that the material
is in its virgin state, the p path can be established for simple materials. Consider for
example, an isotropically hardening solid in its virgin state. It is clear that in this case
a straight line (or radial) path from the origin (Fig. 8) is a path of maximum net comple-
mentary work. Here use of radial loading paths is tantamount to using a deformation
theory of plasticity rather than an incremental theory.

FiG. 8.

5. APPLICATION TO DYNAMIC LOADING

We shall now show that the general principle (16) may be usefully applied to the
computation of safe displacement bounds for impulsive loading problems.
Suppose that the continuum has density p. The specific problem is as follows:

(i) at time t < t, the body is in its virgin state (o;; = &; = 0).
(i) at time t = t, the body acquires velocity 4.
(iii) for times t > t, the surface tractions are prescribed zero over part of the surface
Ap, and the displacements are prescribed zero over the remainder of the surface
A,. Thus external forces do no work on the body.

At time t > t, suppose that the displacements, velocities and strains are given by
uf, 4}, &;. We may then write an energy balance equation relating the states at times ¢,
and ¢:

g
j Pavu9 dv = j Pt dv + j de "0, dey;. 21)
V2 V2 Vv 0
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The work term on the right hand side of (21) must in general be integrated over an
inelastic path. It may be seen that ui, &; are compatible and satisfy all the conditions
imposed on u{, &;, in equation (16). We may therefore substitute (21) into (16), with

of; = 0. This gives

afj
j Paga? dv — Jﬁaﬁa;dwj dvj ef do?, > J Tt dA. (22)
v 2 Vv 2 Vv 4] A

In addition

J Pt av > 0. (23)
2
14
Hence
J Piava? dv + J dVS et dof, > J Tt dA (24)
|4 2 1 4 0 A

T}, o3; remain any set of surface tractions and stresses which are in internal and external
equilibrium, and are completely independent of the dynamic problem. The comple-
mentary work term as computed on the assumption that ¢3; is reached from the virgin
state by a maximum complementary work path. Should it be possible that ¢f; may be
reached by a completely reversible path at all points in the body, (24) reduces to a form
given earlier [1]. By a suitable choice of T3, therefore, bound on certain properties of the
displacement field u} may be computed in terms of the known initial energy of the
dynamic problem and the complementary work of the assumed stress system. It must
be emphasized that the equilibrium (s) system and the compatible (¢ or t) system satisfy
different field equations, and therefore the left and right hand sides of (24) cannot be
made arbitrarily close. The computation of bounds will be illustrated in the following
section. It will be seen that the choice of T§ is dictated entirely by those properties of the
displacement field u; for which a bound is desired. We shall thus make deliberate use of
the fact that 77 and u} may be completely independent.

Under certain circumstances body forces (excluding inertia forces) may be included
in the discussion. They have been omitted here for clarity, but were included in the earlier
paper [1].

It should also be noted that the entire preceding discussion may be carried out for
one and two dimensional continua by considering the appropriate generalized stresses and
generalized strains. Two simple one dimensional continua will be discussed in the follow-
ing section.

6. EXAMPLES

The examples which follow are intended only to illustrate the bound computation
for assumed initial conditions. No exact solutions are given.

Consider first a uniform simply supported beam (Fig. 9) of span I, mass m per unit
length, subjected to some initial velocity distribution »(x) as shown. The material will be
assumed to exhibit a linear work hardening moment curvature relation as shown in
Fig. 10. The yield bending moment will be assumed to be M, the flexural rigidity in the
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v (x)

mass m/unit length
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Fi1G. 9.
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elastic range EI, and the tangent modulus in the plastic range to be EI,. Unloading will
occur with the elastic modulus. Further, shear strains will be assumed to be zero. The
material satisfies the stability postulate and as noted in the previous section, a monotonic
change in bending moment from one value to another will be a maximum net comple-
mentary work path. We shall assume that the beam is unstressed and undeformed before
the impulse is applied, and shall therefore be concerned with changes from M, = 0.
For a monotonic increase in moment from the origin, the elastic and plastic components
of the curvature x are respectively.

el __ _M_
"~ EI
(25)
e 1L M-My forM>M
T EIE ° o
The complementary work function at any point is given by
M M M
J‘ de=I x”’dM—{-J‘ xP'dM
0 0 V]
M?* 1 (EI 26)
- 4 - —M,)?
IEI +2EI<EIP 1) (M—Mo)

where the second term is zero if M < M,
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A bound on the central displacement J, of the beam will be found. The static system
chosen is that shown in Fig. 11, together with the statically determinate bending moment
distribution. The analogous one-dimensional form of the bound expression (24) may now
be written. It may be observed that the bound is not sensitive to the actual initial velocity
distribution, but depends only on the total initial energy. In order to avoid specifying
v(x), therefore we shall put

1
K, =J %vz(x) dx. (27)

FiG. 11.

Further, let the compiementary work term be C,. (24) becomes, in this case
RS, < Ko+C,. (28)

It remains now to determine C,. The bending moment distribution, superposed on Fig. 11,
is broken into two regions: a region where M < M, and one where M > M. The plastic
region (M > M,) will vanish if

— < M, (29)
The parameter p (Fig. 11) defining the length of the elastic region (M < M) for R > 4M,/!

is given by

2M,
pl= "3 (30)

Hence, using (26), the complementary work found for a p path is
.2 [ (Rx\? 2 [EI " Rx 2
C: = —2~E—IJ‘O <T dx+§E7 E;—l ’ (—T—MO dx
P
R?P 3 |EI RI 3
NI el f (b

96EI T 3EIR [EI,, ] [4 M "] G

where the second term is zero for R < 4M/l. Substituting (31) into (28),

g B 2 [er MR PP
°"96EI " 3EIR|EI, 4 70

o, < .
. < R (32)
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Any value of R may be substituted into the right hand side of (32) to obtain a bound on
d.. It is more convenient, in this case, to recast (32) into dimensionless terms and to
attempt to find an optimum value of R. (32) may be written

2 2 2 3
1+ R _%_’_>+64 E’_._l} M_OXML’)(E_._I)
Mod. _ "\ M,) \96EIK, EI, RI J\96EI/\ 4M,

Ko = (Rl) i (33)
M,

In finding the optimum value of (RI/M,), it is simplest to consider separately the case
{RI/M,) < 4. It may easily be shown that for this case the optimum bound is given by

Putting
_ 96EIK,
T M3l
(33) becomes
Aé‘js 2\/31 for s < 16. (35)

My 8
Kol

UPPER BOUND ON DISPLACEMENT PARAMETER

4 s 10 50 100 150
96EIK
5= 25EKo
mz{

F1G. 12. Bound on central displacement for simply supported beam.
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The optimization cannot be carried out in closed form for (RI/M,) > 4. It may be shown
that the optimum value of RI/M, is given by the appropriate root of the following

equation:
EIN/RI\®* 3(RI EI s(Rl
=) S 2 =1 = =) 3
<E1p><Mo> 4(Mo>+ [EI,, ] 64 Mo) (6)

For illustrative purposes, EI/EI, was taken to be 10, and (36) was solved for various
values of s. The solution for RI/M, may then be substituted back into (33) to give the
bound. The results of this calculation have been plotted on Fig. 12, giving the optimum
bound as a function of s.

It is also of interest to compare this result with the more limited expression given in
Reference [1]. This earlier expression has the same form, but restricts the bending
moments in the static system (Fig. 11) to the elastic range, and thus requires RI/M, < 4.
Thus, for s > 16, (RI/M,) is taken equal to 4, and we obtain

Moo < 1 +i
Kol T4 s
(37) has been plotted as a dash line on Fig. 12. The difference between this line and the

~————l——————{
—i "N\
=y

(37)

O

ANNNNNN\Y

FiG. 13.

FiG. 14.
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full line is distinct, although small (due to the limited work hardening defined by
EI/EI, = 10). For more strongly hardening materials, it is clear that the bound given
in this paper will be much better than (37).

The second example we shall consider will be the uniform bent cantilever shown in
plan in Fig. 13. As before let the total kinetic energy of the initial disturbance be K.
We shall compute a bound on the tip displacement component é transverse to the plane
of the cantilever. For this purpose the appropriate static system is shown in Fig, 14,
together with the distribution of bending moment and torsion moment.

We shall assume that the material is in its virgin state, that it work hardens iso-
tropically and that shear strains are zero. Further we shall require that the constitutive
relation should reduce to that used for the previous example for pure bending.

If the generalized stresses on an element of a one-dimensional continuum are repre-
sented by Q;, and the associated plastic strains by ¢%, a general work hardening incre-
mental stress—plastic strain relation for loading can be written (see, for example, Drucker
[4) ,
¢ ¢
an aQo

where ¢ is a function of the generalized stresses, and G is a scalar function which is
independent of the stress increment dQ,. In our case we shall take

=

do, (38)

¢ =M+T? (39)
and assume that in the virgin state first yield occurs for
¢ = M3, (40)

(39) and (40) give a special case of a commonly used yield surface fgr moment and torque
(Hodge [5]). Then, if x is the curvature and ¢ is the twist per unit length, (38) becomes

dx? = G2M)(2M dM +2TdT)
dy? = G(2T)(2M dM +2T dT).

In order that this relation should reduce to linear hardening for pure bending we shall
assume that

(1)

G* G*
S 42
G ¢2 M2+T2 ( )
where G* is a constant. (41) then becomes
*
dx? = %(M dM+TdT)
(43)

%k
dy? = %G_‘_—Tﬁ(M dM + T dT).

Loading can be conveniently defined as é = 0 i.e. a loading path does not decrease ¢.
We shall assume that elastic strains are given simply by

M a_ T
v T GJ

el __

=— 44
El “44)
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The maximum complementary work path from the origin is a radial path, and it is
therefore convenient to write a stress-total strain relation for such a path. Consider the
radial loading path

T=kM, M>0. (45)
From (39) and (40), first yield, and consequently first plastic strain, will occur for
M, kM,
=0 = 46
VA DT i) (46)
Hence, from (44) and (43) the moment curvature relation is given by
% = u® 4ot
M ™ M(1+k?)
— %
EI+_§ p VTR
Molv(1+k2)
(47a)
M M,
= — 4 4G* | M ———2 ),
TR (M \/(1+k2>
Similarly
T M
4 —l ]
Y = ot G* (T \/(sz)) (47b)

In each case the second term is zero if M < My/1+k? It may readily be shown that
47(a) will reduce to (25) provided that

11
4G* = [ |,
G (EI,, EI) “8)
From (47) the complementary energy density is given by

Jarag,=[" xam+[ yar

M2 4G* M, T2 4G* kM,
‘EEi"'T(M"m\/(HkZ)) T35t (T \/(1+k2)) “9)

Referring to Fig. 14, it is seen that the static system will be entirely elastic provided
that yield does not occur at 4; ie. if

R21? <1 N—— )2 R < M3
22) Ty =
ie.
Rl 2

(50)

M, = J6+272)

It will again be convenient to consider the purely elastic system separately. Taking
EI = GJ for the purposes of this example, and measuring x and x’ as in Fig. 14, the
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complementary energy is given by

L
_j‘”m Paxs [ (R ey 8% [ (R d
o 2EI 2\/2 2E1 " | (\2y2) 2EI

R?P R] 2
= 5 2 f —
EEICHND P S GY
Thus, in this case, the bound principle (24) becomes
5 sza
Ré £ Ko+ 16EI(5+2\/2) (52)
It may readily be shown that the optimum bound is given for
16EIK,
= \/ ((5+2‘72)P) ©3)
giving
Moo \/<5+2\/2
K, < . . st {54a)
where
4EIK,
5= M (54b)

For Ri/M, > 2/J(5+2J2) an elastic-plastic boundary will occur in the beam. It may
be seen that the physical parameters of the problem are such that there is only one such
boundary which moves away from C as R is increased. We shall consider only values of
R such that the boundary occurs in BC: let the boundary be distance pl from B. The
initial yield equation (40) is satisfied here, hence

o) ) -

or
RI\? 1
—_— T2 ee———ee 5
(M0> pi+ip+i 9
We have limited p to lie between 0 and 1, and hence will consider
2 Rl
S 4. 56
V (5+\/ 2) (56)
The moment-torque ratio in the plastic region is a function of x, and is given by
R
T 2./2 1
k=—= / = . (57)

M

B ! X
R[mwc] 1+2(\/2)?
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To account for the plastic contribution to the complementary work the following terms,
from (49), must be added to (51) for the range of RI/M given in (56):

2

dx

- M [1+2(\/2)5:l PN
CSsz 4? P — = dx+j 4—(2;— Z—R—%— M°x
ot ~ \/ [2+4(\/2)’lﬁ+83‘2~] ol N \/ [2+4(\/2)7+8f—2]

) e 3508 bt v 5

1
1(M
+§(§19> [2(\/2%— 3} arc sinh [1 + 2(\/2)%‘]] : (58)
ol

The bound expression (24) thus gives

R*P
Ré < Kog+——(5+2/2)+C*. 59
R TTTA V2)+ (59)
¥ 5.0
p=025  p=0
» P=075 P=050
4.0 —
3.0—
" | opTimum Bounp L =10
IN ELASTIC RANGE
2.0 }—
N
1.0 —
o |
0.3 0.5 1.0 5.0 (0 50 0
g- JELKo
w2/

F1G. 15. Bound on tip displacement for bent cantilever.
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In dimensionless terms
1+5+2\/2(ﬁ>2 ( M2l >+ 4<EIC“’) Rz)2 M3l
Mys 4 M, \4EIK, R?P® )\M,) \4EIK,

X S ( = : (60)
M,

There appears to be no possibility of finding an analytical expression for the optimum
bound. In consequence the bound has been evaluated numerically as a function of s for
values of R corresponding to p = 10, 0-75, 0-50, 0-25 and 0. These curves are shown,
together with (53) in Fig. 15. The envelope to the family of curves shown is an upper
bound on the displacement for varying s. In computing these curves, the value EI/EI, = 5
was taken.

7. CONCLUSIONS

To the knowledge of the author, no analytical solutions for impulsively loaded work
hardening structures or continua have been obtained. Some numerical results have
been obtained; for example, Witmer et al. [6]. In these cases, however, large deformations
have been included and hence no direct comparison with the present technique is
available.

The bound technique is relatively simple to apply, even in comparatively complex
structures and continua. Its utility will depend largely on its accuracy. Consideration of
accuracy must be divided into two parts. First, how close is the bound to the analytical
solution it approximates, and second, how good is the analytical solution? The second
factor is beyond the scope of this paper, since it depends on how well the mathematical
description fits the physical problem. The most important restriction is the neglect of
large geometry changes: the analytical solution can be valid only for small impulse
magnitudes.

The first factor can be evaluated only by considering a large number of examples,
and comparing the bounds to full solutions. Previous experience with such methods
[1], [7], [8] show that at best the bound can lie within a few per cent of the actual answer,
and at worst will give at least the order of magnitude of the displacement. It would
appear, therefore, that the method may be significant as a preliminary design procedure
in complex configurations.

Acknowledgment—The author is indebted to Professor D. C. Drucker for his assistance and criticism in the
preparation of this paper.
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Résumé—Certaines études précédentes présentant une technique pour les déplacements a rebondissement
suivant une charge impulsive dans un continuum non élastique, ont été prolongées pour étre appuyées par de
plus puissants résultats sur les matiéres stable durcissantes a travail. Ce supplément, consistant d’un exposé
évident en lui-méme, sur le comportement de la matiére, est ajouté au postulat de stabilit¢ de Drucker pour
les solides indépendants du temps et dépendants de la trajectoire.

Zusammenfassung—Friithere Arbeiten iiber ein Verfahren fiir beschrinkende Verschiebungen in Folge impul-
siver Belastung unelastischer Kontinua werden noch ergidnzt um iiberzeugendere Ergebnisse mit stabilen, durch
Bearbeitung erhirtende Materialien anzugeben. Dieser Ergdnzung wird noch die offensichtliche Erklirung
hinzugefiigt betreffend das Materialverhalten zur Drucker’s Stabilititshypothese fiir zeitunabhingige jedoch
weglingen abhiingige Festkorper.

AGcTpaxT—Pannute ormy6nHKkoBaHHBIH METOI OrPAHHYEHNS IEPEMELLIEHHH, BRITCKAIOLUMX H3 MMIYTBCHBHOR
Harpy3kd B HEYNPYroM KOHTHHyyYMe, pa3paGoTaH B HaCTOALIEM TPYAE C LIEABIO NMOIy4YeHHs GoNiee TOUHbIX
Pe3yNbTaTOR AN YCTOMMMBLIX 3arBEpAEBAlOLMX Ted. IJTO DACIUMDEHHE METOOAa JOCTHIHYTO
TOCPEACTBOM BKJIIOYCHHS CAMOOYEBHIHOrO NPEATONEHHA O TOBENEHMH TeNl No mocTynaty Jlprokepa
OTHOCHTEJILHO YCTOMYMBOCTH HE3aBHCHMMBIX OT BPEMEHH, 3aBHCHMBIX OT NyTH, TBEPABIX Tell.



